Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 52-59, 2021.
Article in Chinese | WPRIM | ID: wpr-906205

ABSTRACT

Objective:To investigate the effect of notoginseng total saponins (TNS) on adriamycin (Adr) resistance in HepG2/Adr cells and the expression and activity of the mechanisms as the modulators of multi-drug resistance, so as to explore the possible mechanism of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) signaling pathways in reversing the resistance of HepG2/Adr cells mechanism. Method:Effect of TNS on HepG2/Adr cell proliferation was detected by thiazole blue (MTT) method. HepG2/Adr cells were treated with different concentrations (100, 50, 25, 0 mg·L<sup>-1</sup>) of TNS and (20 μmol·L<sup>-1</sup>) Adr respectively, and a blank group was set. The high-content screening platform was used to detect the accumulation of Adr in HepG2/Adr cells after 40 minutes, 3 hours and 6 hours. Western blot was used to detect the expression of P-glycoprotein /multidrug resistance/ATP binding cassette subfamily B member 1(P-gp/MDR1/ABCB1) and other drug resistance-related proteins and the main protein expression of ERK/Akt signaling pathway. The change of MDR1 on cell membranes was observed by laser confocal microscopy. Result:Compared with HepG2 cells, the expression of MDR1 in HepG2/Adr cells was significantly increased (<italic>P</italic><0.01). Compared with the Adr group, the half-inhibitory concentration (IC<sub>50</sub>) of TNS (25, 50, 100 mg·L<sup>-1</sup>) and Adr (20 μmol·L<sup>-1</sup>) co-administration group on HepG2/Adr cells <italic>in vitro</italic> significantly reduced (<italic>P</italic><0.01), and the highest reversal multiple was 10 times. Compared with the Adr group, the co-administration group could significantly increase the accumulation of Adr in the cells (<italic>P</italic><0.05) in a dose-dependent manner. Compared with the blank group, the co-administration group could significantly reduce MDR1, ABC semitransporter (ABCG2), multidrug resistance associated protein (MRP1), ERK, phosphorylated extracellular regulatory protein kinase (p-ERK), Akt, phosphorylated protein kinase B (p-Akt), mammals, rapamycin target protein (mTOR) and phosphorylated mammalian rapamycin target protein (p-mTOR) (<italic>P</italic><0.05), with the same results in the doxorubicin group. Compared with the blank group, there was no significant difference in the distribution and fluorescence intensity of MDR1 on the cell membrane between the Adr group and the notoginseng total saponins (25 mg·L<sup>-1</sup>) group. Compared with the blank group and the doxorubicin group, TNS could significantly reduce the distribution of MDR1 on the cell membrane (<italic>P</italic><0.05). Conclusion:TNS can inhibit the ERK/Akt pathway, reduce the expression of MDR1, and significantly increase the accumulation of doxorubicin in HepG2/Adr cells, which may be one of the mechanisms of notoginseng total saponins in reversing resistance.

2.
China Journal of Chinese Materia Medica ; (24): 2717-2722, 2015.
Article in Chinese | WPRIM | ID: wpr-337902

ABSTRACT

Pseudoallergic reactions occured after the first administration of patients, and the pathogenic mechanisms of them were different from the allergic reactions which needed excitation after antigen sensitization. To provide a basis for evaluation, clinical use and drug development of pseudoallergic reactions, the models were established by two kinds of Chinese herbal injections (CHI) both on different strain or gender mice. With the use of ICR, Kunming, BALB/C, C57 mice, pseudoallergic tests of two CHI were conducted to compare the sensitivity of four strains mice, and compared the differences in male and female animals. Test substances contain 0.8% Evans blue (EB) were intravenously injected into different strain and gender mice. Scores of ear blue staining and quantitation of ear EB exudation were the parameters for pseudoallergic reaction. Results of strain difference indicated that both CHI A and B could cause severe pseudoallergic reactions indicated by obvious vascular hyperpermeability on ICR mice. The pseudoallergic reactions in ICR mice are more obvious under the the same dose of injection, which stated the sensibility of ICR mice. And the reactions of KM mice and BALB/C mice were slightly reduced which compared to ICR mice, even alomost nothing on C57 mice. Comparison results of gender difference showed that one CHI was not have significant difference in male and female animals, but male animals were more susceptible than females on another CHI. Therefore, ICR mice were preferable experimental strain on the model of pseudoallergic reactions induced by CHI A and B. Because of female animals were easily influenced by estrous cycle, the pseudoallergic reactions induced by CHI A and B select and use male mice befittingly.


Subject(s)
Animals , Female , Male , Mice , Drug Hypersensitivity , Drugs, Chinese Herbal , Injections , Mice, Inbred BALB C , Mice, Inbred ICR , Sex Characteristics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL